

MECANIQUE DES FLUIDES

Chapitre 6

EXERCICES

Feuille n°7 CORRECTION

Equation de continuité

EXERCICE 1

a) Rappeler l'équation de continuité ; préciser les unités légales des grandeurs.

$$S_1 \cdot v_1 = S_2 \cdot v_2$$

 $S_1 \cdot v_1 = S_2 \cdot v_2$ Equation de continuité pour un fluide incompressible et homogène

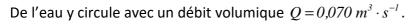
Unités légales:

- \Rightarrow Les aires de sections S_1 et S_2 s'expriment en m^2 .
- \Rightarrow Les vitesses v_1 et v_2 s'expriment en $m \cdot s^{-1}$.
- b) Indiquer avec une petite phrase ce qu'elle signifie.

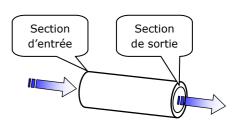
L'équation de continuité porte bien son nom : toute quantité de matière qui passe par la section S_1 passe également en intégralité par la section S_2 . Si tel n'était pas le cas, cela signifierait que du stock de matière se forme à l'intérieur de la conduite ou alors qu'il y a des fuites (conduite percée).

EXERCICE 2

On considère une conduite cylindrique de diamètre extérieur D = 0.5 m et de diamètre intérieur d = 0.4 m.



a) Calculer en m^2 l'aire S_e de la section d'entrée.



On peut travailler avec la formule $S_e = \pi \cdot r^2$ qui donne bien l'aire de la section d'entrée, mais, dans l'énoncé, on nous donne le diamètre donc on préfèrera travailler directement avec le diamètre et donc avec la formule $S_e = \frac{\pi \cdot d^2}{4}$. Cette formule est toute simple à trouver ; il suffit de considérer que le rayon est égale à la moitié

du diamètre :
$$r = \frac{d}{2}$$
 et donc $S_e = \pi \cdot r^2 = \pi \cdot \left(\frac{d}{2}\right)^2 = \pi \cdot \frac{d^2}{2^2} = \pi \cdot \frac{d^2}{4}$; très utile ; à retenir...

Donc:

$$S_e = \frac{\pi \cdot d^2}{4} = \frac{\pi \times 0.4^2}{4} = 0.1257 \text{ m}^2$$

(attention à bien prendre le diamètre intérieur !)

b) Donner l'aire S_s de la section de sortie sans calcul.

La conduite a un diamètre constant ; l'aire de la section l'est donc aussi : $S_s = S_e = 0.1257 \ m^2$

c) Calculer en $m \cdot s^{-1}$ la vitesse moyenne v_e de l'eau dans la section S_e .

On a la relation
$$Q = S_e \times v_e \iff v_e = \frac{Q}{S_e} = \frac{0.070}{0.1257} = 0.557 \text{ m} \cdot \text{s}^{-1}$$

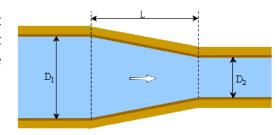
d) A partir de l'équation du débit, calculer en $m \cdot s^{-1}$ la vitesse moyenne v_s de l'eau dans la section S_s .

$$S_e \times v_e = S_s \times v_s \quad \Leftrightarrow \quad v_s = v_e \times \frac{S_e}{S_s}$$

Or, on a $S_s = S_e$ donc, $v_s = v_e = 0.557 \text{ m} \cdot \text{s}^{-1}$

EXERCICE 3

On considère une conduite cylindrique avec un rétrécissement progressif; le diamètre intérieur de la conduite avant rétrécissement vaut $D_{\rm I}=60~mm$ et $D_{\rm 2}=40~mm$ après le rétrécissement.



De l'eau y circule avec un débit volumique $Q = 20 l \cdot min^{-1}$.

a) Convertir les diamètres $D_{\scriptscriptstyle 1}$ et $D_{\scriptscriptstyle 2}$ en m .

$$D_1 = 60 \text{ mm} \equiv \frac{60}{1000} = 0.06 \text{ m}$$

$$D_2 = 40 \ mm \equiv \frac{40}{1000} = 0.04 \ m$$

b) Convertir le débit Q en $m^3 \cdot s^{-1}$.

$$Q = 20 \ l \cdot min^{-1} \equiv \frac{20}{1000} = 0.02 \ m^{3} \cdot min^{-1} \equiv \frac{0.02}{60} = 3.3 \cdot 10^{-4} \ m^{3} \cdot s^{-1}$$

c) Calculer en m^2 l'aire de la section S_I associée au diamètre D_I .

$$S_1 = \frac{\pi \cdot d^2}{4} = \frac{\pi \times 0.06^2}{4} = 2.8 \cdot 10^{-3} \text{ m}^2$$

d) Calculer en $m \cdot s^{-1}$ la vitesse moyenne v_I à laquelle circule l'eau dans la section S_I .

On a la relation
$$Q = S_1 \times v_1 \iff v_1 = \frac{Q}{S_1} = \frac{3.3 \cdot 10^{-4}}{2.8 \cdot 10^{-3}} = 0.118 \text{ m} \cdot \text{s}^{-1}$$

e) Calculer en m^2 l'aire de la section S_2 associée au diamètre D_2 .

$$S_2 = \frac{\pi \cdot d^2}{4} = \frac{\pi \times 0.04^2}{4} = 1.2 \cdot 10^{-3} \text{ m}^2$$

f) Calculer en $m \cdot s^{-1}$ la vitesse moyenne v_2 à laquelle circule l'eau dans la section S_2 .

On a la relation
$$Q = S_2 \times v_2 \iff v_2 = \frac{Q}{S_2} = \frac{3.3 \cdot 10^{-4}}{1.2 \cdot 10^{-3}} = 0.275 \text{ m} \cdot \text{s}^{-1}$$

g) Etablir de façon analytique la relation donnant la vitesse v en fonction du débit Q et du diamètre D .

$$Q = S \times v$$
 et $S = \frac{\pi \cdot d^2}{4}$ $\Rightarrow v = \frac{4 \cdot Q}{\pi \cdot d^2}$

Rappel: diviser par un nombre = multiplier par son inverse.